激光写光电子学进展

激光直写制备LIG-Fe₃O₄复合物微型超级电容器(特邀)

李璐,周昊,韩冬冬*

吉林大学电子科学与工程学院 集成光电子学国家重点实验室, 吉林 长春 130012

摘要 超级电容器是良好的储能器件,具有功率密度高、使用寿命长、充电速度快等优点。激光诱导石墨烯(LIG)是一种 常见的双电层电容器电极材料,但LIG双电层电容器通常表现出较低的电化学性能,而活性物质的掺入会提高超级电容 器性能。针对如何控制活性物质的掺入问题,提出一种基于激光直写表面滴涂硝酸铁[Fe(NO₃)₃]的聚酰亚胺(PI)薄膜 以制备LIG-Fe₃O₄复合物电极的微型超级电容器的方法。激光处理过的区域会同时发生 PI薄膜烧蚀与 Fe(NO₃)₃分解, 产生 Fe₃O₄与 LIG 复合的LIG-Fe₃O₄复合物电极。所制备的LIG-Fe₃O₄复合物微型超级电容器性能与LIG 微型超级电容 器相比提高了7.58倍。所提方法为制备高性能LIG 微型超级电容器提供了一条新途径。

关键词 储能器件;激光直写;激光诱导石墨烯;微型超级电容器

中图分类号 TN249 **文献标志码** A

DOI: 10.3788/LOP232214

Fabrication of High-Performance LIG-Fe₃O₄ Composite-Based Micro-Supercapacitor by Laser Direct Writing (Invited)

Li Lu, Zhou Hao, Han Dongdong*

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, Jilin, China

Abstract Supercapacitors have advantages such as high power density, extended lifetime, and fast charging rate, which make them good energy-storage devices. Laser-induced graphene (LIG) is a widely used electrode material for double-layer electric capacitors; however, double-layer LIG electric capacitors typically exhibit low electrochemical performance, and the addition of active materials improves the supercapacitor performance. To control the incorporation of active substances, we propose a method for preparing LIG-Fe₃O₄ composite-based micro-supercapacitor by laser direct writing polyimide (PI) films coated with $Fe(NO_3)_3$. The laser treated area will simultaneously undergo PI film ablation and Fe $(NO_3)_3$ decomposition, resulting in LIG-Fe₃O₄ composite electrode composed of Fe₃O₄ and LIG. The performance of the prepared LIG-Fe₃O₄ composite-based micro-supercapacitor to LIG-based micro-supercapacitor. The proposed method establishes a new route for preparing high-performance LIG-based micro-supercapacitor.

Key words energy storage devices; laser direct writing; laser-induced graphene; micro-supercapacitor

1引言

超级电容器是一种储能器件,具有功率密度高、充 放电速度快等优点,在可穿戴电子、柔性电子等领域有 重要应用^[1-5]。根据储能原理的不同,超级电容器主要 分为双电层电容器和赝电容器两种^[6-7]。其中,双电层 电容器主要依靠离子在电极与电解质界面的物理吸附 和脱附进行存储、释放能量^[8-10],其具备良好的循环稳 定性和较长的循环寿命^[11-12]。双电层电容器的电极材 料一般为孔隙率高、比表面积大、导电性好的碳材料, 如活性炭、碳纳米管、还原氧化石墨烯等^[13-6]。然而, 受储能机理的限制,双电层电容器的性能通常较低,因 此提高双电层电容器的性能具有一定的挑战性。

激光直写技术因其具有高精度、无掩模加工、高效 率等优点,成为微纳加工的常用方法^[17-21],同时也是制 备微型超级电容器的常见方法之一^[22-25]。激光诱导石 墨烯(LIG)是一种利用激光直写技术制成的碳材 料^[26-29],主要制备原理是采用高能量的激光束将前驱

收稿日期: 2023-09-28; 修回日期: 2023-11-17; 录用日期: 2023-12-01; 网络首发日期: 2023-12-11

基金项目:国家自然科学基金(62275100)、吉林省发展和改革委员会(2022C047-4)、中央高校基本科研业务费专项资金 通信作者: *handongdong@jlu.edu.cn

体的目标区域碳化,进而将前驱体转变成多孔石墨 烯^[30]。因此,LIG表现出高孔隙率、高导电性等特征, 是双电层电容器的良好材料之一^[31-32]。聚酰亚胺(PI) 是LIG的前驱体之一^[33-34]。PI薄膜凭借其耐腐蚀、机 械性能好等优点,成为制备LIG超级电容器的良好基 底材料^[35-38]。然而,纯LIG超级电容器的电化学性能 通常较低。当过渡金属氧化物作为活性物质被掺入电 极中时,超级电容器的性能^[39-42]得到大幅度提高。然 而,控制活性物质掺入的方法仍需要进一步研究。

本文提出一种基于激光直写表面滴涂硝酸铁[Fe (NO₃)₃]的PI薄膜以制备LIG-Fe₃O₄复合物电极的微 型超级电容器的方法。激光处理过的区域会同时发生 PI薄膜烧蚀与Fe(NO₃)₃分解,产生Fe₃O₄与LIG复合 的LIG-Fe₃O₄复合物电极且激光直写技术可以控制活 性物质图形化掺入的位置。因此,与LIG微型超级电 容器相比,LIG-Fe₃O₄复合物微型超级电容器展现出优 异的性能。本文为提高LIG超级电容器的性能提供一 种新的方法。

2 制备与讨论

图 1是 LIG-Fe₃O₄复合物微型超级电容器的制备 流程示意图。首先,需要对 PI薄膜表面进行氧等离子 体处理。经过氧等离子体处理的 PI表面表现出亲水

第 61 卷第 3 期/2024 年 2 月/激光与光电子学进展

性,有利于后期在PI表面滴涂Fe(NO₃)。溶液。其次, 将Fe(NO₃)₃溶液(0.1g/mL)均匀滴涂在经氧等离子 体处理过的 PI 薄膜表面,静置待滴涂的 Fe(NO₃)₃溶 液在室温条件下自然蒸发成膜。然后,利用半导体激 光器(波长为450 nm,扫描速度为2.7 mm/s,功率为 450 mW)在Fe(NO₃)₃/PI薄膜表面烧蚀出叉指电极图 形。激光在烧蚀过程中会诱导 Fe(NO₃)₃分解形成 Fe₃O₄,且PI会转变生成LIG,最终制备出LIG-Fe₃O₄ 复合物电极。实验中,LIG-Fe₃O₄复合物电极的面积为 $0.455 \,\mathrm{cm}^2$ 。最后,在LIG-Fe₃O₄复合物电极表面滴涂磷 酸/聚乙烯醇(H_aPO₄/PVA)电解质溶液进行器件组装, 制备出LIG-Fe₃O₄复合物微型超级电容器。为了比较 LIG-Fe₃O₄复合物微型超级电容器和LIG 微型超级电容 器的器件性能,选取相同加工参数的激光烧蚀PI薄膜 表面制备LIG叉指电极,并在LIG叉指电极表面滴涂 H₃PO₄/PVA电解质进行器件组装与性能测试。

首先,利用激光扫描共聚焦显微镜(CLSM)对 LIG-Fe₃O₄复合物电极的表面形貌进行观察。如 图 2(a)所示,PI薄膜基底颜色稍浅,LIG-Fe₃O₄复合物 电极表面颜色较深。LIG-Fe₃O₄复合物电极表面呈深 色的原因是激光对PI的烧蚀作用以及Fe(NO₃)₃分解 形成深色的Fe₃O₄。图 2(b)是PI-LIG-Fe₃O₄复合物电 极材料表面的轮廓曲线,可以看到LIG-Fe₃O₄复合物

图 1 LIG-Fe₃O₄复合物微型超级电容器制备示意图 Fig. 1 Schematic illustration of fabricating LIG-Fe₃O₄ composite-based micro-supercapacitor

图 2 LIG-Fe₃O₄复合物电极的CLSM图像。(a)PI与LIG-Fe₃O₄复合物电极边缘;(b)PI与LIG-Fe₃O₄复合物电极边缘高度变化曲 线;(c)LIG-Fe₃O₄复合物电极表面

Fig. 2 CLSM images of LIG-Fe₃O₄ composite electrode. (a) Edge of PI and LIG-Fe₃O₄ composite electrode; (b) edge height variation curve of PI and LIG-Fe₃O₄ composite electrode; (c) surface of LIG-Fe₃O₄ composite electrode

第 61 卷第 3 期/2024 年 2 月/激光与光电子学进展

电极材料表面比 PI 薄膜基底高约 10 μm。这种现象的 原因是经激光烧蚀的 PI 材料在分解过程中会形成气 体,气体溢出会导致 LIG 材料发生膨胀。图 2(c)是高 倍数下的 LIG-Fe₃O₄复合物电极材料表面 CLSM 图 像,可以看到电极表面存在均匀分布的条纹状结构,条 纹状结构形成的原因是在激光直写过程中 PI 所包含 的基团以气体形式溢出表面。该粗糙结构的存在有利 于电极与电解质材料的充分接触,进而提高器件的 性能。

为了进一步观察LIG-Fe₃O₄复合物电极表面的微

观形貌,采用扫描电子显微镜(SEM)拍摄LIG-Fe₃O₄ 复合物电极表面的微观形貌。图3(a)为低倍数下的 LIG-Fe₃O₄复合物电极表面的SEM图像。图3(b)为 高倍数下的LIG-Fe₃O₄复合物电极表面的SEM图像。 通过观察高倍数下的SEM图像,可以发现LIG-Fe₃O₄ 复合物电极表面具有大量的纳米级孔道结构,该结构 形成的原因是PI材料在高能量激光辐照条件下发生 高温热解产生的气体从表面溢出。纳米级孔道结构的 存在有利于电极材料与电解质材料充分接触,且电解 质可以渗入电极内部,提高超级电容器性能。

图 3 LIG-Fe₃O₄复合物电极的 SEM 图像。(a)低倍数下的 LIG-Fe₃O₄复合物电极 SEM 图像;(b)高倍数下的 LIG-Fe₃O₄复合物电极 SEM 图像

Fig. 3 SEM images of LIG-Fe₃O₄ composite electrode. (a) Low magnification SEM image of LIG-Fe₃O₄ composite electrode; (b) high magnification SEM image of LIG-Fe₃O₄ composite electrode

为了进一步研究在电极表面滴涂 Fe(NO₃)₃溶液 对产物组分的影响,分别对 LIG 与 LIG-Fe₃O₄复合物 进行材料组分的表征,如图4所示。图4(a)、(b)为 LIG与LIG-Fe₃O₄复合物的X射线光电子能谱(XPS)。

图4 LIG和LIG-Fe₃O₄复合物的材料组分表征。(a)XPS;(b)高分辨率Fe 2p光谱;(c)拉曼光谱;(d)LIG和LIG-Fe₃O₄复合物的 X射线衍射(XRD)谱图

Fig. 4 Characterization of LIG and LIG-Fe₃O₄ composite material components. (a) XPS; (b) high-resolution Fe 2p spectrum;
 (c) Raman spectrum; (d) X-ray diffraction(XRD) patterns of LIG and LIG-Fe₃O₄ composite electrode

LIG 在~284 eV(C 1s)和~532 eV(O 1s)处有明显的 两个峰,1s是指1s轨道。其中LIG-Fe₃O₄复合物在 284 eV(C 1s)、532 eV(O 1s)和711 eV(Fe 2p)处有明 显的三个峰,2p是指2p轨道。在PI材料中,碳的含量 约为80%,经过激光处理后,LIG与LIG-Fe₃O₄复合物 中碳的含量提高到约90%。这说明激光处理过程中, PI在高能量激光的作用下发生了热解反应,导致材料 中碳含量提高。LIG中未检测出Fe 2p峰,LIG-Fe₃O₄ 复合物中铁的含量约为0.82%。上述结果初步说明 在LIG-Fe₃O₄复合物中存在铁元素。图4(c)为LIG与 LIG-Fe₃O₄复合物的Raman光谱。在Raman光谱中存在 三个特征峰,分别为D峰(1350 cm⁻¹)、G峰(1581 cm⁻¹) 和 2D 峰(2723 cm⁻¹)。其中 D 峰代表结构缺陷, G 峰 代表 sp²碳原子的面内振动, 2D 峰代表碳原子的层间 堆垛方式。2D峰的出现表明LIG与LIG-Fe₃O₄复合 物材料中均包含石墨烯材料。此外,LIG材料的D峰 与G峰强度比 $(I_{\rm D}/I_{\rm G})$ 为0.91,LIG-Fe₃O₄复合物的 $I_{\rm D}/$ $I_{\rm c}$ 比值为1.02。与LIG材料相比,LIG-Fe₃O₄复合物材 料的 $I_{\rm D}/I_{\rm G}$ 比值更高,表明LIG-Fe₃O₄复合物中存在更 多的缺陷。图 4(d)为 LIG 与 LIG-Fe₃O₄ 复合物的 XRD 谱图, LIG 在 25.8°左右出现石墨烯的特征峰, LIG-Fe₃O₄复合物也在 25.8°左右出现石墨烯的特征 峰,说明二者均含有石墨烯材料。同时,LIG-Fe₃O₄复合 物分别在 30.1°、35.5°、42.7°、53.5°、56.9°、62.6°等位置

第 61 卷第 3 期/2024 年 2 月/激光与光电子学进展

出现特征峰。与标准卡片对比可知,这些特征峰的位置 均与 Fe_3O_4 材料的标准卡片中位置一致。这说明所制 备的复合材料由石墨烯与 Fe_3O_4 组成。这说明激光处 理过的区域会同时发生PI薄膜烧蚀与 $Fe(NO_3)_3$ 分解, 产生 Fe_3O_4 与LIG复合的LIG- Fe_3O_4 复合物电极。

通过循环伏安(CV)曲线和恒流充放电(GCD)曲 线分析LIG 微型超级电容器与LIG-Fe₃O₄复合物微型 超级电容器的电化学性能,如图5和图6所示。 图 5(a)是在不同扫描速率下 LIG 微型超级电容器的 CV曲线,在5mV/s的扫描速率下,LIG微型超级电容 器的面积比电容约为0.24 mF/cm²。图 5(b)是在不同 电流密度下 LIG 微型超级电容器的 GCD 曲线,在 3μA/cm²的电流密度下,LIG 微型超级电容器的面积比 电容为0.15 mF/cm²。图 5(c)是在不同扫描速率下 LIG 微型超级电容器的面积比电容,随着扫描速率的增加, 面积比电容从 0.24 mF/cm²减小到 0.0077 mF/cm²。 图 5(d)是在不同电流密度下 LIG 微型超级电容器的 面积比电容,随着电流密度的增加,面积比电容从 0.15 mF/cm²减小到 0.13 mF/cm²。受离子扩散的限 制,面积比电容会随着扫描速率和电流密度的增加而 逐渐减小。

图 6是 LIG-Fe₃O₄复合物微型超级电容器的电化 学性能曲线图。图 6(a)是在不同扫描速率下 LIG-Fe₃O₄复合物微型超级电容器的 CV 曲线,在5 mV/s

图 5 LIG 微型超级电容器性能测试。(a)不同扫描速率下的 CV 曲线;(b)不同电流密度下的 GCD 曲线;(c)不同扫描速率下的 面积比电容;(d)不同电流密度下的面积比电容

图 6 LIG-Fe₃O₄复合物微型超级电容器性能测试。(a)不同扫描速率下的CV曲线;(b)不同电流密度下的GCD曲线;(c)不同扫描 速率下的面积比电容;(d)不同电流密度下的面积比电容

Fig. 6 Performance test of LIG-Fe₃O₄ composite-based micro-supercapacitor. (a) CV curves at different scanning rates; (b) GCD curves at different current densities; (c) area specific capacitances at different scanning rates; (d) area specific capacitances at different current densities

的扫描速率下,LIG-Fe₃O₄复合物微型超级电容器的面积比电容为1.82 mF/cm²。图 6(b)是在不同电流密度下LIG-Fe₃O₄复合物微型超级电容器的GCD曲线,在 25 μ A/cm²的电流密度下,LIG-Fe₃O₄复合物微型超级 电容器的面积比电容为1.25 mF/cm²。图 6(c)是在不同扫描速率下LIG-Fe₃O₄复合物微型超级电容器的面积比电容,随着扫描速率的增加,面积比电容从 1.82 mF/cm²减小到 0.73 mF/cm²。图 6(d)是在不同电流密度下LIG-Fe₃O₄复合物微型超级电容器的面积 比电容,随着电流密度的增加,面积比电容从

1.25 mF/cm²減小到 0.89 mF/cm²。与LIG 微型超级 电容器相比,LIG-Fe₃O₄复合物微型超级电容器的面积 比电容提高了约 7.58 倍。因为 Fe₃O₄材料具有高理论 容量(942 mAh/g)^[43],所以LIG-Fe₃O₄复合物微型超级 电容器有着更高的面积比电容。

为了满足高电压和电容的要求,对LIG-Fe₃O₄复 合物微型超级电容器进行串联和并联测试,结果如 图7所示。图7(a)是3个超级电容器串联和并联的示 意图。图7(b)、(c)分别是单个超级电容器、3个器件 串联和3个器件并联的CV曲线和GCD曲线。从测

Fig. 7 Performance test of LIG-Fe₃O₄-based micro-supercapacitors in series and parallel connection. (a) Schematic diagram of LIG-Fe₃O₄ composite-based micro-supercapacitors in series and parallel connection; (b) CV curves of single device, three devices in series and parallel connection; (c) GCD curves of single device, three devices in series and parallel connection

试结果曲线可以看出,单个超级电容器的电压窗口是 1V,3个超级电容器串联可以将电压窗口变为3V。

3 结 论

提出了一种基于激光直写表面滴涂 $Fe(NO_3)_3$ 的 PI薄膜以制备 LIG-Fe₃O₄复合物电极的微型超级电容 器的方法。激光处理过的区域会同时发生 PI薄膜烧 蚀与 $Fe(NO_3)_3$ 分解,产生 Fe_3O_4 与 LIG 复合的 LIG- Fe_3O_4 复合物电极。LIG-Fe₃O_4复合物微型超级电容器 的面积比电容为 1.82 mF/cm²,远大于 LIG 微型超级 电容器(0.24 mF/cm²)。通过串联接入所提超级电容 器,可以提高窗口电压。本文为制备高性能的 LIG 微 型超级电容器提供一条新的途径。

参考文献

- 杨策,程虎虎,曲良体.新型能源器件的激光微纳加工 研究进展[J].中国激光,2021,48(15):1502004.
 Yang C, Cheng H H, Qu L T. Research advancement on laser micro-nano processing of new energy devices[J]. Chinese Journal of Lasers, 2021, 48(15):1502004.
- [2] 周伟平, 王树同, 于泳超, 等. 飞秒激光直写制备内嵌 微透镜、能源器件及生物传感器的研究进展[J]. 中国激光, 2017, 44(1): 0102002.
 Zhou W P, Wang S T, Yu Y C, et al. Research progress in fabrication of embedded microball lenses, energy devices and biosensors by femtosecond laser direct writing[J]. Chinese Journal of Lasers, 2017, 44(1): 0102002.
- [3] Zhou H, Li J C, Han X C, et al. Deformable moistureactivated all-solid-state planar microsupercapacitors[J]. Applied Physics Letters, 2023, 122(10): 103901.
- [4] Wang Y M, Wu X L, Han Y Q, et al. Flexible supercapacitor: overview and outlooks[J]. Journal of Energy Storage, 2021, 42: 103053.
- [5] Li L, Zhang J B, Peng Z W, et al. High-performance pseudocapacitive microsupercapacitors from laser-induced graphene[J]. Advanced Materials, 2016, 28(5): 838-845.
- [6] Fu X Y, Chen Z D, Han D D, et al. Laser fabrication of graphene-based supercapacitors[J]. Photonics Research, 2020, 8(4): 577-588.
- [7] El-Kady M F, Ihns M, Li M P, et al. Engineering threedimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(14): 4233-4238.
- [8] Lao J J, Sun P, Liu F, et al. In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage[J]. Light: Science & Applications, 2018, 7: 34.
- [9] Xiong G P, Meng C Z, Reifenberger R G, et al. A review of graphene-based electrochemical microsupercapacitors [J]. Electroanalysis, 2014, 26(1): 30-51.
- [10] Noori A, El-Kady M F, Rahmanifar M S, et al. Towards establishing standard performance metrics for batteries, supercapacitors and beyond[J]. Chemical Society

Reviews, 2019, 48(5): 1272-1341.

- [11] Tan Y B, Lee J M. Graphene for supercapacitor applications[J]. Journal of Materials Chemistry A, 2013, 1(47): 14814-14843.
- [12] Sharma K, Arora A, Tripathi S K. Review of supercapacitors: materials and devices[J]. Journal of Energy Storage, 2019, 21: 801-825.
- [13] 梅欢欢,崔健磊,程杨,等.碳纳米管与金属电极异质 连接及其电学性能的研究进展[J].中国激光,2021,48
 (8):0802023.
 Mei H H, Cui J L, Cheng Y, et al. Heterogeneous connection of carbon nanotubes with metal electrodes and its electrical properties[J]. Chinese Journal of Lasers, 2021,48(8):0802023.
- [14] 陈招弟,李纪超,萧善霖,等.激光还原氧化石墨烯制 备薄膜柔性电子器件[J].激光与光电子学进展,2020, 57(11):111428.
 Chen Z D, Li J C, Xiao S L, et al. Laser reduced graphene oxide for thin film flexible electronic devices[J].
 Laser & Optoelectronics Progress, 2020, 57(11): 111428.
- [15] 霍金鹏,肖宇,孙天鸣,等.基于飞秒激光还原氧化石 墨烯的SiC纳米线接头电学增强[J].中国激光,2021, 48(8):0802007.
 Huo J P, Xiao Y, Sun T M, et al. Electrical enhancement of SiC nanowire joints based on femtosecond

enhancement of SiC nanowire joints based on femtosecond laser reduction of GO[J]. Chinese Journal of Lasers, 2021, 48(8): 0802007.

- [16] Bose S, Kuila T, Mishra A K, et al. Carbon-based nanostructured materials and their composites as supercapacitor electrodes[J]. Journal of Materials Chemistry, 2012, 22(3): 767-784.
- [17] Liu X Q, Zhang Y L, Li Q K, et al. Biomimetic sapphire windows enabled by inside-out femtosecond laser deep-scribing[J]. PhotoniX, 2022, 3(1): 1.
- [18] Li K, Yang M, Cai C K, et al. Handling mode and polarization in fiber by fs-laser inscribed (de)multiplexer and silicon switch array[J]. PhotoniX, 2023, 4(1): 14.
- [19] Wang H, Zhang Y L, Han D D, et al. Laser fabrication of modular superhydrophobic chips for reconfigurable assembly and self-propelled droplet manipulation[J]. PhotoniX, 2021, 2(1): 17.
- [20] Zhang B, Wang Z, Tan D Z, et al. Ultrafast laserinduced self-organized nanostructuring in transparent dielectrics: fundamentals and applications[J]. PhotoniX, 2023, 4(1): 24.
- [21] Sugioka K, Cheng Y. Ultrafast lasers: reliable tools for advanced materials processing[J]. Light: Science &. Applications, 2014, 3(4): e149.
- [22] Sun Y L, Dong W F, Niu L G, et al. Protein-based soft micro-optics fabricated by femtosecond laser direct writing
 [J]. Light: Science & Applications, 2014, 3(1): e129.
- [23] 张林华,杨永强,来克娴.激光技术在大规模集成电路 中的应用及展望[J].激光与光电子学进展,2005,42(6): 48-55.

Zhang L H, Yang Y Q, Lai K X. Laser in large-scale integrated circuit: application and prospects[J]. Laser & Optronics Progress, 2005, 42(6): 48-55.

第 61 卷第 3 期/2024 年 2 月/激光与光电子学进展

特邀研究论文

- [24] 陈继民.激光微技术的发展现状[J].激光与光电子学进展, 2006, 43(9): 25-29.
 Chen J M. Development of laser micro technology[J].
 Laser & Optoelectronics Progress, 2006, 43(9): 25-29.
- [25] 廖嘉宁,王欣达,周兴汶,等.飞秒激光直写铜微电极研究[J].中国激光,2019,46(10):1002013.
 Liao J N, Wang X D, Zhou X W, et al. Femtosecond laser direct writing of copper microelectrodes[J]. Chinese Journal of Lasers, 2019, 46(10):1002013.
- [26] 原永玖,李欣.飞秒激光加工石墨烯材料及其应用[J]. 激光与光电子学进展, 2020, 57(11): 111414.
 Yuan Y J, Li X. Femtosecond laser processing of graphene and its application[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111414.
- [27] 刘雨晴,张嘉芮,韩冬冬,等.激光加工石墨烯传感器 和执行器研究进展[J].中国激光,2021,48(15):1502003.
 Liu Y Q, Zhang J R, Han D D, et al. Recent progress in laser-processed graphene for sensors and actuators[J].
 Chinese Journal of Lasers, 2021, 48(15):1501003.
- [28] 李晨,杨研伟,夏田,等.基于木材上激光诱导石墨烯 集成传感器的研究[J].中国激光,2022,49(2):0202005.
 Li C, Yang Y W, Xia T, et al. Integrated sensor based on laser-induced graphene on wood[J]. Chinese Journal of Lasers, 2022, 49(2):0202005.
- [29] 韩冬冬,蔡青,李纪超,等.激光诱导石墨烯水下超疏 油仿生表面的制备[J].激光与光电子学进展,2020,57 (15):151408.
 Han D D, Cai Q, Li J C, et al. Preparation of laser induced graphene based underwater superoleophobic

bionic surface[J]. Laser & Optoelectronics Progress, 2020, 57(15): 151408.

- [30] Lee Y, Low M J, Yang D, et al. Ultra-thin light-weight laser-induced-graphene (LIG) diffractive optics[J]. Light: Science & Applications, 2023, 12: 146.
- [31] 王宗源,胡滨,吴旭东.激光诱导石墨烯技术研究进展
 [J].激光与光电子学进展,2021,58(1):0100003.
 Wang Z Y, Hu B, Wu X D. Research progress of laserinduced graphene technology[J]. Laser & Optoelectronics Progress, 2021, 58(1):0100003.
- [32] Ye R Q, James D K, Tour J M. Laser-induced graphene[J]. Accounts of Chemical Research, 2018, 51(7): 1609-1620.
- [33] 王进,周如东,张宁,等.1064 nm 光纤激光器直写聚酰 亚胺成碳工艺参数研究[J].中国激光,2021,48(10):1002112.
 Wang J, Zhou R D, Zhang N, et al. Process parameters

of direct writing polyimide by 1064 nm fiber laser[J]. Chinese Journal of Lasers, 2021, 48(10): 1002112.

[34] Ye R Q, James D K, Tour J M. Laser-induced

graphene: from discovery to translation[J]. Advanced Materials, 2019, 31(1): 1803621.

[35] 邢心魁,蒋雪,刘凡凡,等.基于聚酰亚胺材料的光纤 布拉格光栅湿度传感器[J]. 激光与光电子学进展, 2022, 59(13): 1328002.
Xing X K, Jiang X, Liu F F, et al. Fiber Bragg grating humidity sensor based on polyimide material[J]. Laser &

humidity sensor based on polyimide material[J]. Laser & Optoelectronics Progress, 2022, 59(13): 1328002.

- [36] 唐健冠,黄姝琪,郭会勇,等.耐高温光纤布拉格光栅 阵列在线制备与性能研究[J].激光与光电子学进展, 2023,60(7):0706002.
 Tang J G, Huang S Q, Guo H Y, et al. On-line writing and performance high-temperature resistant fiber Bragg grating array[J]. Laser & Optoelectronics Progress, 2023,60(7):0706002.
- [37] 刘孝丽,熊玉卿,杨建平,等.激光刻蚀聚酰亚胺基底 铝薄膜的温度场模拟[J].中国激光,2015,42(7): 0703006.
 Liu X L, Xiong Y Q, Yang J P, et al. Simulation of temperature field for laser etching of aluminum thin films on polyimide substrate[J]. Chinese Journal of Lasers, 2015,42(7):0703006.
- [38] Chen X Y, Liu H, Zheng Y J, et al. Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor[J]. ACS Applied Materials & Interfaces, 2019, 11(45): 42594-42606.
- [39] Zhang X Y, Sun S H, Sun X J, et al. Plasma-induced, nitrogen-doped graphene-based aerogels for highperformance supercapacitors[J]. Light: Science &. Applications, 2016, 5(10): e16130.
- [40] 王联甫,管延超,丁烨,等.飞秒激光直写制备LIG/RuO₂复合电极[J].中国激光,2022,49(16):1602016.
 Wang L F, Guan Y C, Ding Y, et al. Fabrication of LIG/RuO₂ composite electrode by femtosecond laser direct writing[J]. Chinese Journal of Lasers, 2022, 49 (16): 1602016.
- [41] 白聪聪,张峻豪,高畅,等.基于激光加工的平面型微型超级电容器[J].中国激光,2021,48(2):0202013.
 Bai C C, Zhang J H, Gao C, et al. Planar microsupercapacitor based on laser processing[J]. Chinese Journal of Lasers, 2021, 48(2): 0202013.
- [42] Peng Z W, Ye R Q, Mann J A, et al. Flexible borondoped laser-induced graphene microsupercapacitors[J]. ACS Nano, 2015, 9(6): 5868-5875.
- [43] Lian P C, Zhu X F, Xiang H F, et al. Enhanced cycling performance of Fe₃O₄-graphene nanocomposite as an anode material for lithium-ion batteries[J]. Electrochimica Acta, 2010, 56(2): 834-840.